
Domain-Driven Design Training
Content & Organisation

June 17th, 2024

Training
Presentation

Presentation:
Software should serve a business domain. The objective of Domain-Driven Design (DDD) is to create
better software more easily by focusing on the business domain rather than technology.
Software is well-suited to its domain when it effectively addresses domain-related problems. DDD is
an approach and a set of design techniques to manage domain complexity and align the software
with the business concepts it handles.
This training teaches you the fundamentals of DDD and its practical implementation in your
software.

Goals:
• Mastering the Domain-Driven Design (DDD) approach: why? benefits? key principles.
• Study and implement the DDD building blocks.
• Study and implement design principles: supple design and strategic design.
• Explore architectures that support a DDD approach.
• Discuss practical and concrete aspects of DDD with experience sharing.

Training
Conduct

Audience:
• Architects
• Developers (junior or senior)
• Team Leaders
• Project Managers

Prerequisites:
• Knowledge of object-oriented programming (Java, C#, Python, etc.).
• Experience in software development and engineering

Training materials:
• PDF slides (in english), distributed at the end of the training.

Duration:
• 3 days / 21 hours

Teaching mode proportions:

• 50% theorical, 50% practical . Exercises can be adapted to your context.

At the end of the training program, participants receive a certificate to confirm that they have
achieved the objective.

Training
Organization

Location: training can be intra-company, or inter-company. In this case, the exact location will be
provided during the registration.

Scheduling: according our website calendar for inter-company. For intra-company, scheduling is to
be determined with the customer.

Costs:
• inter-company training: 1 790 € per participant
• in-house training: price upon quotation

Contact: formations@defsquare.com or +33 6 71 01 06 52

For all individuals with disabilities, please feel free to contact us at +33 6 71 01 06 52 or
formations@defsquare.com.

Additionally, all our training sessions are available online.

Defsquare offers breakfast at the training location and lunch for each of your days with us.

mailto:formations@defsquare.com
mailto:formation@defsquare.com

Domain-driven Design

Introduction to DDD approach

Architectures for a DDD approach

Fundamentals

Day 3

Day 2

Day 1

The training uses an e-commerce system as a common thread for practical cases. Participants can also
submit cases related to their domain if they wish.

The code structure and solutions are provided on the Java platform, but using another platform (.Net,
Ruby, Python, Clojure, etc.) is also possible.

DDD Building Blocks
DDD Supple Design for scalable and testable software

DDD Strategic Design: Integrate software into its ecosystem,
integrate teams

Design
Software

Run
Software

Build
Software

Good Design: Domain-Driven,
Stratified, Decoupled,

Composable

Production-Ready Systems:
Observable, Performant,

Secure, Reliable, Cloud Native

Software Engineering,
Functional Programming,

Clojure

Domain-Driven Design

Day 1

Introduction

Origin, definitions
and benefits

Key principles of the
approach

What is design
activity?

Before
designing: Why
this software?

Define the product vision

why is the software developed

Techniques : Feature injection,
Impact mapping, User Story

Mapping, Mental Models

Before designing: Explore the
domain and specify system

behaviour

Scenarios with examples
to explore the domain

Event storming

Express expected
behaviour with BDD
examples

Scenario organiation

Express business rules
in scenarios

Practical cases

Fundamentals of Modeling
and Complexity

management

What is a model ?

What is complexity ? Tools to
manage it.

Practical aspects: communication,
intentions, form, collective model

management

Day 1

Day 2 - DDD
building blocks

Ubiquitous
language

Building
blocks

Value
object

Entity

Repository

Factory

Service

Module

Aggregate

Practical
exercises

Day 2

Domain-Driven Design

Day 3

DDD supple
Design for scalable

and testable
software

Dependency
management

State management

Responsability
separation

Encapsulation and
interface

Functional
paradigm:
laziness,

immutability, pure
functions

DDD supple design

Architecture for a
DDD approach

Modularize the
domain

Hexagonal
Architecture

Event-driven
Architecture:
CQRS, Event

sourcing

Microservice
Architecture with

DDD

Persistence
management with

DDD

DDD strategic
design: Integrate
software into its

ecosystem,
integrate teams

Bounded context

Integrate different
models

Context map

Relationships
between systems

and teams

Day 3

Domain-Driven Design

